Irrigation control based on model predictive control (MPC): Formulation of theory and validation using weather forecast data and AQUACROP model
نویسندگان
چکیده
This research proposes A THEORETICAL FRAMEWORK based on model predictive control (MPC) for irrigation control to minimize both root zone soil moisture deficit (RZSMD) and irrigation amount under a limited water supply. We (i) investigate means to incorporate direct measurements to MPC (ii) introduce two Robust MPC techniques e Certainty Equivalence control (CE) and Disturbance Affine Feedback Control (DA) e to mitigate the uncertainty of weather forecasts, and (iii) provide conditions to obtain two important theoretical aspects of MPC e feasibility and stability e in the context of irrigation control. Our results show that system identification enables automation while incorporating direct measurements. Both DA and CE minimize RZSMD and irrigation amount under uncertain weather forecasts and always maintain soil moisture above wilting point subject to water availability. The theoretical results are compared against the model AQUACROP, weather data and forecasts from Shepparton, Australia. We also discuss the performance of Robust MPC under different water availability, soil, crop conditions. In general, MPC shows to be a promising tool for irrigation control. © 2015 Elsevier Ltd. All rights reserved.
منابع مشابه
Model Predictive Control of Distributed Energy Resources with Predictive Set-Points for Grid-Connected Operation
This paper proposes an MPC - based (model predictive control) scheme to control active and reactive powers of DERs (distributed energy resources) in a grid - connected mode (either through a bus with its associated loads as a PCC (point of common coupling) or an MG (micro - grid)). DER may be a DG (distributed generation) or an ESS (energy storage system). In the proposed scheme, the set - poin...
متن کاملModel Predictive Control System Design using ARMAX Identification Method for Car-following Behavior
The control of car following is essential due to its safety and its operational efficiency. For this purpose, this paper builds a model of car following behavior based on ARMAX structure from a real traffic dataset and design a Model Predictive Control (MPC) system. Based on the relative distance and relative acceleration of each instant, the MPC predicts the future behavior of the leader vehic...
متن کاملDesign and implementation of a model predictive controller for the COVID-19 spread restraint in Iran
In this paper, a model is proposed based on the different levels of social restrictions for the COVID-19 spread restraint in Iran. Also, a Genetic Algorithm (GA) identifies parameters of model using reported main data from the Iranian Ministry of Health and simulated data based on proposed model. Whereas Model Predictive Control (MPC) is a popular method which has been widely used in process ...
متن کاملDesign and Practical Implementation of a New Markov Model Predictive Controller for Variable Communication Packet Loss in Network Control Systems
The current paper investigates the influence of packet losses in network control systems (NCS’s) using the model predictive control (MPC) strategy. The study focuses on two main network packet losses due to sensor to controller and controller to actuator along the communication paths. A new Markov-based method is employed to recursively estimate the probability of time delay in controller to ac...
متن کاملAdaptive Tuning of Model Predictive Control Parameters based on Analytical Results
In dealing with model predictive controllers (MPC), controller tuning is a key design step. Various tuning methods are proposed in the literature which can be categorized as heuristic, numerical and analytical methods. Among the available tuning methods, analytical approaches are more interesting and useful. This paper is based on a proposed analytical MPC tuning approach for plants can be appr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental Modelling and Software
دوره 78 شماره
صفحات -
تاریخ انتشار 2016